Snow Nets for Avalanche Protection Chris Wilbur, P.E.

Wilbur Engineering, Inc. Statewide Project Engineer's Conference Lake Chelan, Washington October 15, 2013

Outline

- Origins in Europe
- Rigid vs. Flexible
- USA Applications
- Design Parameters
- I-90 Snoqualmie Pass East
 - Climate & Site Conditions
 - Project Challenges
 - Instrumentation & Outlook
- Questions

"Bald Knob" I-90 Snoqualmie Pass East Photo: Hi Tech Rockfall

Wilbur Engineering, Inc. WSDOT Statewide PE Conference Lake Chelan, October 15, 2013

Misconceptions

"Geonets are used by engineers to predict the occurrence of avalanches." ASCE Civil Engineering Magazine, June 1997

Andermatt, Switzerland Photo: Michael Falser

Primary Use in Europe:

Protect Villages

- > Andermatt, Switz.
- Davos, Switz.
- Galtur, Austria

Galtur, Austria

Walls/benches

K. Imhof 1912 *Lawinenverbauungen*

Photos: Michael S. Falser, 2007 Historische Lawinenschutzlandschaften

Early Structures

Aluminum Frame with Wood Cross Members 1959 photo by Wagner & Hopf Mattstock Avalanche Amden, Switz.

Photos source: Perla & Martinelli, 1978 USDA Avalanche Handbook 489

Orientation

Perla & Martinelli, USDA Avalanche Handbook 489

Wilbur Engineering, Inc. WSDOT Statewide PE Conference Lake Chelan, October 15, 2013

Snow Nets in USA

Climax Molybdenum Mine Lake County, Colorado Source: Frutiger & Martinelli, USFS, 1966

> Wilbur Engineering, Inc. WSDOT Statewide PE Conference Lake Chelan, October 15, 2013

Sunlight Ridge Mt. Crested Butte, Colorado

- Protects Condos
- > 1989 child fatality
- Concrete wall in 1996
- ➢ Snow nets in 2006
- > Dk 3.0m 1500 ft. length
- Cost "just over \$1 million"
- > 2007 Avalanche Maps revised
- Deep snow in January 2008

WIIDUr Engineering, Inc. WSDOT Statewide PE Conference Lake Chelan, October 15, 2013

Teton Science School Jackson, Wyoming

- Dk=3.0m nets
- > Short slope
- Preventative measure
- Low visual impact

Art Mears photo

Alpental Subdivision Snoqualmie Pass, WA

- 4.0 meter Geobrugg snow nets
- Installed after tree logging
- Contractor: Janod, Quebec, Canada
- Cost overruns due to unforeseen poor ground anchor conditions

WYDOT - US 89/191

MP 151 Jackson, Wyo.

- > 8000 ADT (winter)
- > Avg. Return Period 0.7 yrs.
- Replaced "Wind Sails" (from 2002)
- USFS Critical Big Game Habitat
- NEPA process
- Built in 2012-13
- > \$2.3 million
- Reforestation component

Photos courtesy of TLC Tree and Landscape Co.

The Canyons – Park City, Utah Vela "Umbrella" Nets

Photos from Vela

- Individual Units
- > Single Anchor
- Relatively New
- Considered for I-90

Design

- Creep
- Glide
- Factors
 - Snow height
 - Ground roughness
 - (glide factor)
 - Snow density
 - Terrain shape
 - Slope angle

Source: 2009 Swiss Guidelines By Stefen Margreth, SLF

Snow Nets

Profile Source: Figure 31, 2007 Swiss Guidelines

Double spiral cable anchor (Maccaferri/Kane Geotech)

Typical Loads

	B	B A	A B B
Snow pressure	93 kN/m'	93 kN/m'	85 kN/m ⁺ (5.8 kips/ft)
Pressure force (+) Tension force (-)	+261 kN (A)	+365 kN (A)	-81 kN (A) (-18 kips)
	+115 kN (B)	-44 kN (B)	+255 kN (B) (57 kips)
	-182 kN (C)	-169 kN (C)	-322 kN (C) (-72 kips)

for Dk=4.0, N=2.5, fc=1.1 slope 45 deg. intermediate section

Source: Stefan Margreth, ISSW 2008 Whistler, BC, Canada

I-90 Snoqualmie Pass East

- 30,000 ADT
- 58,000 ADT peak weekends
- 35 million tons of freight/year
- Cost of Closures (120 hrs/yr average)
- Snow Nets (3 sites)
- Other mitigation bridge, ditch/wall systems

I-90 Snoqualmie Pass East

I-90 Snow Nets

<u>Quantities:</u>

- Slide Curve –3693 l.f.
- E. S. Minus 1 540 l.f.
- Bald Knob 103 l.f.
- Totals
 - 4.0 m 1941 l.f.
 - 3.5 m 1148 l.f.
 - <u>3.0 m 1247 l.f.</u>

TOTAL = 4336 l.f.

Preliminary Construction Cost:

Engineer's Est.: \$10.0 million Bid Award: \$6.0 million Change Orders: \$2.9 million Total Cost: \$8.9 million

Unit cost:

\$2053/ft \$6732/m

Not included: Training, spare parts, instrumentation.

Wilbur Engineering, Inc. WSDOT Statewide PE Conference Lake Chelan, October 15, 2013

Weather Stations

Snoqualmie Pass Snow Depth

Design Climate

Washington Cascades vs. Swiss Alps

- 1. Total Precipitation
- 2. Seasonal Differences
- 3. Temperatures
- 4. Rain-on-snow

Slide Curve

- 3.0m, 3.5m & 4.0m heights
- High density snow
- Variable ground conditions
- Instrumentation
- Re-Forestation

Photos: John Stimberis, WSDOT

Wilbur Engineering, Inc. WSDOT Statewide PE Conference Lake Chelan, October 15, 2013

Upper Slide Curve

- High Glide Factor
- Greater Snow Depth
- Artificial Roughening

Surface Roughening

Photos: Stefan Margreth SLF Swiss Federal Institute for Snow and Avalanches

Bald Knob

Smooth Rock – High Glide Factor Convex Slope

East Shed Minus One

Smooth Rock (High Glide Factor)
Lower Elevation
Water Flow at base of snowpack

East Shed Minus One

Photos: High Tech Rockfall, Inc.

Slide Curve Iterative Design Process

East Shed Minus One

Bald Knob

Project Challenges

- Snow Conditions
- Variable Ground Conditions
- Limited Geotechnical Data
- Technical Specifications
- Limited Experience
 - Designers
 - Contractors
 - Owner

Slide Curve Boulder Field

Addressing Challenges

- European Expertise
- Geotechnical Consultant
- Iterative Design Layout
- Artificial Surface Roughening
- Upsizing Snow Net Heights
- Incorporate New Data (2009 ROS*)
- Comprehensive Anchor Testing

Roberto Castaldini, Dr. Ing. Studio Tecnico di Ingegneria Verona, Italy

* Rain-on-snow - January 2009 event was classified as an extreme event, with a return period in excess of 100 yrs.

Snow Net Instrumentation

Uphill Anchor Tension
 Post Compression
 Post Inclination
 Downhill Cable Tension

Inspections

Types of	L1	L2	SL2	L3
Inspection	Level 1 Inspection	Level 2 Inspection	Special Level 2 Inspection	Level 3 Inspection
Periods	Key structure: annually Standard structure: at least every 5 years	all structures: before end of guarantee Key structure: every 5 years	Key structure: after extreme events	all structures: in vase of need
Methods	visual visual		advanced methods	
Executed by	Lumbermen Experts		Experts (interdisciplinary)	
Result	Level 1 minutes Level 2 minutes		Level 3 minutes	

From Florian Rudolf-Miklau, Wolfgang Schilcher, Johann Kessler and Jürgen Suda Life Cycle Management for Technical Avalanche Protection Systems, Egilsstaðir, Iceland, 2008

Iceland Snow Nets

Damaged due to insufficient lateral support Photo: Tómas Jóhannesson

Austria Snow Bridges

Damaged by avalanche Photo: Florian Rudolf-Miklau

Outlook

- Highway Closure Reduction
- Forecasting & Control Resources
- Summer Maintenance
- Structure Retirements
- Structure Replacements
- Costs vs. Benefits

Slide Curve Photo: John Stimberis, WSDOT

Wilbur Engineering, Inc. WSDOT Statewide PE Conference Lake Chelan, October 15, 2013

Snow Nets Take-away

- Starting Zone Structures (snow nets and/or snow bridges) are a very effective passive avalanche defense
- Costs depends on size of starting zone, snow depth, ground conditions, land availability
- Eliminates decision making during extreme snow conditions
- Frees up avalanche forecast/control resources during winter big storms
- Inspections & Maintenance are required to achieve typical design life of 80 years

Thank You!

Questions?

Wilbur Engineering, Inc. WSDOT Statewide PE Conference Lake Chelan, October 15, 2013